
Performance, Portability & Productivity

Data Parallel C++

Rakshith Krishnappa, Developer Evangelist @Intel

rakshith.krishnappa@intel.com

2DPC++

Performance, Portability and Productivity

01/12/2022 Introduction to Performance, Portability and Productivity
for HPC

02/09/2022 Optimization Best Practices using SYCL

03/09/2022 Optimization for Performance Portability across CPU and
GPU

03/16/2022 Performance, Portability and Productivity – Mini
Hackathon

3DPC++

What will you learn in this Learning Series

Session 1 (Jan 12th 2022)

• Understand why Performance, Portability and Productivity are important for
HPC

• Identify an algorithm and implement using Math Kernel Library and check for
performance on CPUs and GPUs

• Implement the same algorithm using basic SYCL programming

• Analyze results using Intel Advisor Roofline and Intel VTune Profiler

• We will do all this on Intel DevCloud on the following CPUs and GPUs:
• Intel® Xeon® E-2176G Processor with GEN9 GT2 Graphics

• Intel (R) Core (TM) i9-10920X with Iris XE Max discrete Graphics

• Intel® Xeon® Gold 6128 Processor

• Intel® Xeon® Platinum 8153 Processor

4DPC++

What will you learn in this Learning Series

Session 2 (Feb 9th 2022)

• Use SYCL features to tune the basic algorithm.

• Learn about using ND_Range kernels and impact of work-group size

• Use private memory and shared local memory to improve performance

• Analyze results using Intel Advisor Roofline and Intel VTune Profiler

5DPC++

What will you learn in this Learning Series

Session 3 (Mar 9th 2022)

• Optimize algorithm for Performance Portability across CPUs and GPUs

• Analyze results using Intel Advisor Roofline and Intel VTune Profiler and
compare all algorithm implementations.

• Understand different accelerator hardware characteristics and further optimize
algorithm

• Understand impact of accelerator Occupancy and impact of varying Work-
group sizes

• Resources for more advanced tuning using the oneAPI GPU optimization guide

6DPC++

What will you learn in this Learning Series

Session 4 (Mar 16th 2022)

• Mini-Hackathon and working session, bring your own code, share and ask us
any questions.

• We will have a bunch of Intel experts with hardware architecture , SYCL
language experts, Performance tuning experts and Tools experts.

• We will have break-out rooms to work with Intel experts.

DPC++ 7

Growth in specialized workloads

Variety of data-centric hardware required

Separate programming models and toolchains for each
architecture are required today

Software development complexity limits freedom of
architectural choice

Programming Challenges

CPU
programming

model

GPU
programming

model

FPGA
programming

model

Other accel.
programming

models

DPC++ 8

Cross-architecture programming that delivers freedom
to choose the best hardware

Based on industry standards and open specifications

Exposes cutting-edge performance features of latest
hardware

Compatible with existing high-performance languages
and programming models including C++, OpenMP,
Fortran, and MPI

oneAPI

DPC++ 9

▪ Delivers accelerated computing by exposing hardware features

▪ Allows code reuse across hardware targets, while permitting custom tuning for
specific accelerators

▪ Provides an open, cross-industry solution to single architecture proprietary lock-in

▪ Delivers C++ productivity benefits, using common, familiar C and C++ constructs

▪ Incorporates SYCL from the Khronos Group to support data parallelism and
heterogeneous programming

▪ Provides extensions to simplify data parallel programming

▪ Continues evolution through open and cooperative development

Data Parallel C++

The open source and Intel DPC++/C++ compiler supports Intel CPUs, GPUs, and FPGAs.
Codeplay announced a DPC++ compiler that targets Nvidia GPUs.

Apply your skills to the next innovation, not rewriting
software for the next hardware platform

https://www.codeplay.com/portal/02-03-20-codeplay-contribution-to-dpcpp-brings-sycl-support-for-nvidia-gpus

10DPC++

Data Parallel C++

DPC++ Essentials Learning Path:

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/dpc-essentials.html

DPC++ Book:

https://www.apress.com/us/book/9781484255735

oneAPI GPU Optimization Guide:

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-
optimization-guide/top/intro.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/dpc-essentials.html
https://www.apress.com/us/book/9781484255735

11DPC++

SYCL 2020

Specification:

https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

DPC++ 12

SYCL 2020 Specification

▪ The SYCL 2020 specification was released on February 9, 2021

▪ Several major features, including:

• Unified shared memory

• Reductions

• Modern atomics

• Sub-groups

• Group algorithms (e.g. reductions, scans)

• Extension and interoperability mechanisms

13DPC++

DPC++ Extensions now part of SYCL 2020

Many of DPC++ Extensions became part of SYCL 2020
specification:

• Unified Shared Memory (USM)

• Sub-Groups

• Reductions

DPC++ now adopts the SYCL 2020 syntax for the above
features.

14DPC++

Unified Shared Memory in SYCL 2020

Unified Shared Memory(USM) is now part of SYCL 2020, No changes
in USM syntax.

Type Description
Accessible
on Host?

Accessible
on Device?

sycl::malloc_device
Allocations in device memory.

Programmer must explicitly transfer data between host and device.
No Yes

sycl::malloc_host
Allocations in host memory.

Kernels can access these allocations directly.
Yes Yes

sycl::malloc_shared

Allocations can migrate between host and device memory.

Different implementations may provide different guarantees
regarding whether allocations can be accessed by host and device
concurrently.

Yes Yes

15DPC++

Sub-Groups in SYCL 2020

Sub-Groups are now part of
SYCL 2020 Specification

sub_group class

A sub-group handle can be
obtained from an nd_item
using get_sub_group()

sycl::ONEAPI::sub_group sg = item.get_sub_group();

sycl::ext::oneapi::sub_group sg = item.get_sub_group();

sycl::sub_group sg = item.get_sub_group();

auto sg = item.get_sub_group();

Before

Now

16DPC++

Sub-Groups in SYCL 2020

DPC++ Sub-Groups Shuffles are now part of SYCL 2020 Sub-Group
“Group Algorithms” free functions instead of member functions.

Old DPC++ Compiler Current DPC++ Compiler (SYCL 2020)

sg.shuffle_down(x, 1); sycl::shift_group_left(sg, x, 1);

sg.shuffle_up(x, 1); sycl::shift_group_right(sg, x, 1);

sg.shuffle(x, id); sycl::select_from_group(sg, x, id);

sg.shuffle_xor(x, mask); sycl::permute_group_by_xor(sg, x, mask);

17DPC++

Sub-Groups in SYCL 2020

DPC++ Sub-Groups Collective are now part of SYCL 2020 Sub-Group
“Group Algorithms” with function name changes.

Old DPC++ Compiler Current DPC++ Compiler (SYCL 2020)

broadcast(sg, x, id); group_broadcast(sg, x, id);

reduce(sg, x, op); reduce_over_group(sg, x, op);

exclusive_scan(sg, x, op); exclusive_scan_over_group (sg, x, op);

inclusive_scan(sg, x, op); inclusive_scan_over_group (sg, x, op);

any_off(sg, x); any_off_group(sg, x);

all_off(sg, x); all_off_group(sg, x);

none_off(sg, x); none_off_group(sg, x);

18DPC++

Reductions in SYCL 2020

DPC++ introduced a
dedicated abstraction
for reduction kernels.

This is now part of
SYCL 2020.

q.parallel_for(nd_range<1>{N, B},

sycl::ext::oneapi::reduction(sum, 0, sycl::ext::oneapi::plus<>()),

[=](nd_item<1> it, auto& tmp) {

int i = it.get_global_id(0);

tmp += data[i];

}).wait();

q.parallel_for(nd_range<1>{N, B},

sycl::reduction(sum, 0, sycl::plus<>()), [=](nd_item<1> it, auto& tmp) {

int i = it.get_global_id(0);

tmp += data[i];

}).wait();

Before

Now

19DPC++

Reductions in SYCL 2020

Below example shows changes in reductions in SYCL2020 when using
USM and Buffers

Old DPC++ SYCL 2020

USM ext::oneapi::reduction(sum, ext::oneapi::plus<>()) sycl::reduction(sum, sycl::plus<>())

Buffers ext::oneapi::reduction(sum_acc, ext::oneapi::plus<>()) sycl::reduction(sum_buf, h, sycl::plus<>())

20DPC++

Reductions in SYCL 2020

SYCL 2020 specification
extends kernel reductions
even further by allowing
multiple reductions in a
single kernel.

auto reduction_min = sycl::reduction(min, sycl::minimum<>());

auto reduction_max = sycl::reduction(max, sycl::maximum<>());

q.parallel_for(nd_range<1>{N, B},

reduction_min, reduction_max,

[=](nd_item<1> it, auto& tmp_min , auto& tmp_max) {

int i = it.get_global_id(0);

tmp_min.combine(data[i]);

tmp_max.combine(data[i]);

}).wait();

DPC++ 21

Run the tools locally Run the tools in the Cloud

Intel® oneAPI
Toolkits Free
Availability

Code Samples, Quick-start Guides, Webinars, Training

software.intel.com/oneapi

Downloads

Repositories

Containers

software.intel.com/oneapi

DPC++ 22

Intel® DevCloud

A development sandbox to develop, test
and run workloads across a range of
Intel CPUs, GPUs, and FPGAs using
Intel’s oneAPI software.

software.intel.com/devcloud/oneapi

https://software.intel.com/en-us/devcloud/oneapi

23DPC++

Intel DevCloud

• Login to Intel DevCloud - devcloud.intel.com/oneapi

• Get Started -> Launch Jupyter Lab option

• Start Terminal and enter command to copy latest content

• /data/oneapi_workshop/get_jupyter_notebooks.sh

24

DPC++ 25

Legal Notices and Disclaimers

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks.

Performance results are based on testing as of the publication date of the referenced papers and may not reflect all publicly available security updates. See
configuration disclosure for details. No product can be absolutely secure.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm
whether referenced data are accurate.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

http://www.intel.com/benchmarks

